Multi-slice ptychographic imaging with multistage coarse-to-fine reconstruction

Opt Express. 2022 Jun 6;30(12):21211-21229. doi: 10.1364/OE.457945.

Abstract

The ability to image 3D samples with optical sectioning is essential for the study of tomographic morphology in material and biological sciences. However, it is often hampered by limitations of acquisition speed and equipment complexity when performing 3D volumetric imaging. Here, we propose, to the best of our knowledge, a new method for 3D reconstruction from a minimum of four intensity-only measurements. The complementary structured patterns provided by the digital micromirror device (DMD) irradiate the outermost layer of the sample to generate the corresponding diffraction intensities for recording, which enables rapid scanning of loaded patterns for fast acquisition. Our multistage reconstruction algorithm first extracts the overall coarse-grained information, and then iteratively optimizes the information of different layers to obtain fine features, thereby achieving high-resolution 3D tomography. The high-fidelity reconstruction in experiments on two-slice resolution targets, unstained Polyrhachis vicina Roger and freely moving C. elegans proves the robustness of the method. Compared with traditional 3D reconstruction methods such as interferometry-based methods or Fourier ptychographic tomography (FPT), our method increases the reconstruction speed by at least 10 times and is suitable for label-free dynamic imaging in multiple-scattering samples. Such 3D reconstruction suggests potential applications in a wide range of fields.

MeSH terms

  • Algorithms
  • Animals
  • Caenorhabditis elegans*
  • Imaging, Three-Dimensional* / methods
  • Interferometry
  • Tomography