Blood Glucose Alterations and Continuous Glucose Monitoring in Centrifuge-Simulated Spaceflight

Aerosp Med Hum Perform. 2022 Sep 1;93(9):688-695. doi: 10.3357/AMHP.6110.2022.

Abstract

INTRODUCTION: Sympathetic stimulation is known to be associated with transient alterations of blood glucose (BG) concentration; spaceflight acceleration may be similarly associated with alterations of BG, potentially posing a risk to diabetic individuals engaging in future spaceflight activities. Despite prior studies demonstrating diabetic subjects' tolerance to centrifuge-simulated spaceflight, data are lacking regarding blood glucose response to hypergravity. It remains unclear whether hypergravity or associated physiological response may pose a risk to diabetics. Continuous glucose monitors (CGM) offer a means of noninvasive glucose monitoring and may be useful in spaceflight and analog environments. Here, we describe the results of continuous glucose monitoring during centrifuge-simulated spaceflight.METHODS: Subjects participated in 1-5 centrifuge-simulated spaceflight profiles (maximum +4.0 Gz, +6.0 Gx, 6.1 G resultant). Data collection included heart rate, blood pressure, electrocardiogram, continuous glucose via CGM, intermittent fingerstick BG, and postrun questionnaires regarding symptoms related to hypergravity exposure.RESULTS: CGM data were collected from 26 subjects, including 4 diabetics. While diabetic subjects had significantly higher BG compared to nondiabetics, this was not associated with any difference in symptoms or tolerance. Transient hypergravity-associated CGM glucose alterations did not affect tolerance of the centrifuge experience. CGM data were found to be reliable with occasional exceptions, including four instances of false critical low glucose alarms.DISCUSSION: While further study is necessary to better characterize CGM fidelity during hypergravity and other spaceflight-related stressors, CGM may be a feasible option for spaceflight and analog settings. As in prior studies, individuals with well-controlled diabetes appear able to tolerate the accelerations anticipated for commercial spaceflight.Ong KM, Rossitto JJ, Ray K, Dufurrena QA, Blue RS. Blood glucose alterations and continuous glucose monitoring in centrifuge-simulated spaceflight. Aerosp Med Hum Perform. 2022; 93(9):688-695.

MeSH terms

  • Aerospace Medicine*
  • Blood Glucose
  • Blood Glucose Self-Monitoring
  • Diabetes Mellitus*
  • Glucose
  • Humans
  • Space Flight*

Substances

  • Blood Glucose
  • Glucose