Source coherence-induced control of spatiotemporal coherency vortices

Opt Express. 2022 May 23;30(11):19871-19888. doi: 10.1364/OE.458666.

Abstract

A novel method to achieve the coherence control of spatiotemporal coherency vortices of spatially and temporally partially coherent pulsed vortex (STPCPV) beams is proposed. The influence of spatial and temporal coherence of the source on the phase distributions and the positions of spatiotemporal coherency vortices of the STPCPV beams propagating through fused silica is investigated in detail, for the first time to our knowledge. It is found that the coherence width and the coherence time of the incident beam can be regarded as a perfect tool for controlling the phase distribution and position of a spatiotemporal coherency vortex. The results obtained in this paper will benefit a number of applications relating to light-matter interaction, quantum entanglement, quantum imaging, optical trapping and spatiotemporal spin-orbit angular momentum coupling.