Robust metallic micropatterns fabricated on quartz glass surfaces by femtosecond laser-induced selective metallization

Opt Express. 2022 May 23;30(11):19544-19556. doi: 10.1364/OE.456927.

Abstract

Quartz glass has a wide range of application and commercial value due to its high light transmittance and stable chemical and physical properties. However, due to the difference in the characteristics of the material itself, the adhesion between the metal micropattern and the glass material is limited. This is one of the main things that affect the application of glass surface metallization in the industry. In this paper, micropatterns on the surface of quartz glass are fabricated by a femtosecond laser-induced backside dry etching (fs-LIBDE) method to generate the layered composite structure and the simultaneous seed layer in a single-step. This is achieved by using fs-LIBDE technology with metal base materials (Stainless steel, Al, Cu, Zr-based amorphous alloys, and W) with different ablation thresholds, where atomically dispersed high threshold non-precious metals ions are gathered across the microgrooves. On account of the strong anchor effect caused by the layered composite structures and the solid catalytic effect that is down to the seed layer, copper micropatterns with high bonding strength and high quality, can be directly prepared in these areas through a chemical plating process. After 20-min of sonication in water, no peeling is observed under repeated 3M scotch tape tests and the surface was polished with sandpapers. The prepared copper micropatterns are 18 µm wide and have a resistivity of 1.96 µΩ·cm (1.67 µΩ·cm for pure copper). These copper micropatterns with low resistivity has been proven to be used for the glass heating device and the transparent atomizing device, which could be potential options for various microsystems.