Water exchange detected by shutter speed dynamic contrast enhanced-MRI help distinguish solitary brain metastasis from glioblastoma

Eur J Radiol. 2022 Nov:156:110526. doi: 10.1016/j.ejrad.2022.110526. Epub 2022 Sep 27.

Abstract

Purpose: This study aimed to explore the feasibility of transmembrane water exchange parameters detected by brain shutter speed (BSS) dynamic contrast enhanced (DCE)MRI, which is validated to be associated with aquaporin-4 expression, in distinguishing glioblastoma (GBM) from solitary brain metastasis (SBM).

Methods: 40 patients (mean age: 58.6 ± 11.7 years old, male/female: 23/17) with GBM and 48 patients (mean age: 61.7 ± 10.5 years old, male/female: 28/20) with SBM were enrolled in this observational study. BSS DCE-MRI was performed before operation. Intravascular water efflux rate constant (kbo) and intracellular water efflux rate constant (kio) within the peritumoral region and enhancing tumor were calculated from SS-DCE, respectively. The difference of these two parameters between GBM and SBM was explored. Immunohistochemical staining aquaporin-4 of was performed to validate its underlying biological mechanism.

Results: The kbo was found to be statistically different within both peritumoral region {SBM vs. GBM (s-1): 1.0[0.4,1.7] vs. 1.5[0.9,2.1], p = 0.009} and enhanced tumor {SBM vs. GBM (s-1): 0.2[0.1,0.5] vs. 0.4[0.1,1.3], p = 0.034}. Immunohistochemical analysis reveals the high perivascular aquaporin-4 expression in GBM may contribute the higher kbo value than that of SBM.

Conclusions: kbo derived from BSS DCE-MRI was an independent pathophysiological parameter for separating GBM from SBM, in which kbo might be associated with the perivascular aquaporin-4 expression.

Keywords: Brain metastases; Glioblastoma; Magnetic resonance imaging; Tumor perfusion; Water exchange.