Delayed Luminescence in 2-Methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole Derivatives

J Phys Chem A. 2022 Oct 20;126(41):7480-7490. doi: 10.1021/acs.jpca.2c05392. Epub 2022 Oct 10.

Abstract

2,5-Diphenyl-1,3,4-oxadiazole has been widely used as an acceptor portion of donor-acceptor fluorophores that exhibit thermally activated delayed fluorescence (TADF), but analogous 2-alkyl-5-phenyl-1,3,4-oxadiazoles have been much less widely investigated. Here the properties of carbazole-substituted 2-methyl-5-phenyl-1,3,4-oxadiazoles are compared to those of their 2,5-diphenyl analogues. The fluorescence of each of the former compounds is blue-shifted by ca. 50-100 meV relative to that in the latter, while similar estimated values of the singlet-triplet energy separation (ΔEST) are maintained. In particular, 2-methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole and 2-methyl-5-(penta(3,6-di-tert-butyl-9-carbazolyl)phenyl)-1,3,4-oxadiazole exhibit solution fluorescence maxima of 466 and 485 nm and estimated ΔEST values of 0.12 and 0.03 eV, respectively. In both cases the reverse intersystem crossing (RISC) rates inferred from their solution fluorescence behavior are over twice those of the corresponding 2-phenyl derivatives. Organic light-emitting diodes (OLEDs) in which the 2-methyl derivatives are used as emitters yield external quantum efficiency (EQE) values of up to 23%. OLEDs with 2-methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole and 2-methyl-5-(penta(3,6-di-tert-butyl-9-carbazolyl)phenyl)-1,3,4-oxadiazole emitters show reduced efficiency rolloff at high current densities relative to their 2-phenyl counterparts, the latter exhibiting an EQE of 16% at 1000 cd m-2.