Comprehensive ceRNA network for MACF1 regulates osteoblast proliferation

BMC Genomics. 2022 Oct 7;23(1):695. doi: 10.1186/s12864-022-08910-0.

Abstract

Background: Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells.

Results: In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes.

Conclusion: This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC‑E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.

Keywords: Competing endogenous RNA (ceRNA); LnRNA; MiRNA; Microtubule actin crosslinking factor 1 (macf1); Osteoblast proliferation; Transcriptomic analysis.

MeSH terms

  • Actins / genetics
  • Actins / metabolism
  • Atherosclerosis*
  • Cell Proliferation / genetics
  • Gene Regulatory Networks
  • Humans
  • MicroRNAs* / genetics
  • Microfilament Proteins / genetics
  • Microfilament Proteins / metabolism
  • Osteoblasts / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • RNA, Messenger / genetics
  • Rho Guanine Nucleotide Exchange Factors / genetics
  • Rho Guanine Nucleotide Exchange Factors / metabolism
  • Tumor Suppressor Protein p53 / genetics

Substances

  • ARHGEF2 protein, human
  • Actins
  • MACF1 protein, human
  • MicroRNAs
  • Microfilament Proteins
  • RNA, Long Noncoding
  • RNA, Messenger
  • Rho Guanine Nucleotide Exchange Factors
  • Tumor Suppressor Protein p53