Genome Reporting for Healthy Populations-Pipeline for Genomic Screening from the GENCOV COVID-19 Study

Curr Protoc. 2022 Oct;2(10):e534. doi: 10.1002/cpz1.534.

Abstract

Genome sequencing holds the promise for great public health benefits. It is currently being used in the context of rare disease diagnosis and novel gene identification, but also has the potential to identify genetic disease risk factors in healthy individuals. Genome sequencing technologies are currently being used to identify genetic factors that may influence variability in symptom severity and immune response among patients infected by SARS-CoV-2. The GENCOV study aims to look at the relationship between genetic, serological, and biochemical factors and variability of SARS-CoV-2 symptom severity, and to evaluate the utility of returning genome screening results to study participants. Study participants select which results they wish to receive with a decision aid. Medically actionable information for diagnosis, disease risk estimation, disease prevention, and patient management are provided in a comprehensive genome report. Using a combination of bioinformatics software and custom tools, this article describes a pipeline for the analysis and reporting of genetic results to individuals with COVID-19, including HLA genotyping, large-scale continental ancestry estimation, and pharmacogenomic analysis to determine metabolizer status and drug response. In addition, this pipeline includes reporting of medically actionable conditions from comprehensive gene panels for Cardiology, Neurology, Metabolism, Hereditary Cancer, and Hereditary Kidney, and carrier screening for reproductive planning. Incorporated into the genome report are polygenic risk scores for six diseases-coronary artery disease; atrial fibrillation; type-2 diabetes; and breast, prostate, and colon cancer-as well as blood group genotyping analysis for ABO and Rh blood types and genotyping for other antigens of clinical relevance. The genome report summarizes the findings of these analyses in a way that extensively communicates clinically relevant results to patients and their physicians. © 2022 Wiley Periodicals LLC. Basic Protocol 1: HLA genotyping and disease association Basic Protocol 2: Large-scale continental ancestry estimation Basic Protocol 3: Dosage recommendations for pharmacogenomic gene variants associated with drug response Support Protocol: System setup.

Keywords: COVID-19; bioinformatics; genome reporting; genomics; next generation sequencing (NGS).

MeSH terms

  • Blood Group Antigens*
  • COVID-19* / genetics
  • Computational Biology / methods
  • Genomics
  • Humans
  • Male
  • SARS-CoV-2 / genetics

Substances

  • Blood Group Antigens