A study on brain neuronal activation based on the load in upper limb exercise (STROBE)

Medicine (Baltimore). 2022 Sep 23;101(38):e30761. doi: 10.1097/MD.0000000000030761.

Abstract

This study aimed to determine the level of brain activation in separate regions, including the lobes, cerebellum, and limbic system, depending on the weight of an object during elbow flexion and extension exercise using functional magnetic resonance imaging (fMRI). The study was conducted on ten male undergraduates (22.4 ± 1.2 years). The functional images of the brain were obtained using the 3T MRI. The participants performed upper limb flexion and extension exercise at a constant speed and as the weight of the object for lifting was varied (0 g and 1000 g). The experiment consisted of four blocks that constituted 8 minutes. Each block was designed to comprise a rest phase (1 minute) and a lifting phase (1 minute). The results showed that, in the parietal lobe, the activation was higher for the 0 g-motion condition than for the 1000 g-motion condition; however, in the occipital lobe, cerebellum, sub-lobar, and limbic system, the activation was higher for the 1000 g-motion condition than for the 0 g-motion condition. The brain region for the perception of object weight was identified as the ventral area (occipital, temporal, and frontal lobe), and the activation of the ventral pathway is suggested to have increased as the object came into vision and as its shape, size, and weight were perceived. For holding an object in hand, compared to not holding it, the exercise load was greater for controlling the motion to maintain the posture (arm angle at 90°), controlling the speed to repeat the motion at a constant speed, and producing an accurate posing. Therefore, to maintain such varied conditions, the activation level increased in the regions associated with control and regulation through the motion coordination from vision to arm movements (control of muscles). A characteristic reduced activation was observed in the regions associated with visuo-vestibular interaction and voluntary movement when the exercise involved lifting a 1000-g object compared to the exercise without object lifting.

MeSH terms

  • Brain Mapping / methods
  • Brain* / physiology
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Occipital Lobe / physiology
  • Parietal Lobe
  • Upper Extremity*