Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications

Chem Rev. 2022 Nov 23;122(22):16752-16801. doi: 10.1021/acs.chemrev.2c00045. Epub 2022 Oct 4.

Abstract

Effective manipulation of liquids on open surfaces without external energy input is indispensable for the advancement of point-of-care diagnostic devices. Open-surface microfluidics has the potential to benefit health care, especially in the developing world. This review highlights the prospects for harnessing capillary forces on surface-microfluidic platforms, chiefly by inducing smooth gradients or sharp steps of wettability on substrates, to elicit passive liquid transport and higher-order fluidic manipulations without off-the-chip energy sources. A broad spectrum of the recent progress in the emerging field of passive surface microfluidics is highlighted, and its promise for developing facile, low-cost, easy-to-operate microfluidic devices is discussed in light of recent applications, not only in the domain of biomedical microfluidics but also in the general areas of energy and water conservation.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lab-On-A-Chip Devices*
  • Microfluidics*
  • Point-of-Care Systems
  • Wettability