Viperin impairs the innate immune response through the IRAK1-TRAF6-TAK1 axis to promote Mtb infection

Sci Signal. 2022 Oct 4;15(754):eabe1621. doi: 10.1126/scisignal.abe1621. Epub 2022 Oct 4.

Abstract

Mycobacterium tuberculosis (Mtb) infection is a long-standing public health threat, and the development of host-directed therapy for eradicating Mtb infection requires better insights into Mtb-host interactions. Viperin [virus-inhibitory protein, endoplasmic reticulum-associated, interferon (IFN) inducible] is an IFN-inducible protein with broad antiviral activities. Here, we demonstrated that Viperin was increased in abundance in patients with lymphatic and pulmonary tuberculosis (TB). Viperin-deficient mice had decreased Mtb bacterial loads and enhanced macrophage responses compared with their wild-type counterparts. Viperin suppressed the formation of a complex containing interleukin-1 receptor-associated kinase 1, TNF receptor-associated factor 6, and transforming growth factor β-activated kinase 1 (TAK1) and inhibited the TAK1-dependent activation of IκB kinase α/β, thereby impairing the production of nitric oxide and proinflammatory cytokines. These results suggest that Viperin promotes Mtb infection by inhibiting host innate immune responses in macrophages, suggesting that Viperin may be a candidate target for adjunct host-directed therapy in patients with TB.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiviral Agents / metabolism
  • Cytokines / metabolism
  • I-kappa B Kinase / metabolism
  • Immunity, Innate
  • Interferons / metabolism
  • Interleukin-1 Receptor-Associated Kinases* / genetics
  • Interleukin-1 Receptor-Associated Kinases* / metabolism
  • MAP Kinase Kinase Kinases
  • Mice
  • Nitric Oxide / metabolism
  • Proteins
  • TNF Receptor-Associated Factor 6* / metabolism
  • Transforming Growth Factor beta / metabolism

Substances

  • Antiviral Agents
  • Cytokines
  • Proteins
  • Rsad2 protein, mouse
  • TNF Receptor-Associated Factor 6
  • TRAF6 protein, mouse
  • Transforming Growth Factor beta
  • Nitric Oxide
  • Interferons
  • Interleukin-1 Receptor-Associated Kinases
  • Irak1 protein, mouse
  • I-kappa B Kinase
  • MAP Kinase Kinase Kinases
  • MAP kinase kinase kinase 7