Effectiveness, Policy, and User Acceptance of COVID-19 Contact-Tracing Apps in the Post-COVID-19 Pandemic Era: Experience and Comparative Study

JMIR Public Health Surveill. 2022 Oct 27;8(10):e40233. doi: 10.2196/40233.

Abstract

Background: In the post-COVID-19 pandemic era, many countries have launched apps to trace contacts of COVID-19 infections. Each contact-tracing app (CTA) faces a variety of issues owing to different national policies or technologies for tracing contacts.

Objective: In this study, we aimed to investigate all the CTAs used to trace contacts in various countries worldwide, including the technology used by each CTA, the availability of knowledge about the CTA from official websites, the interoperability of CTAs in various countries, and the infection detection rates and policies of the specific country that launched the CTA, and to summarize the current problems of the apps based on the information collected.

Methods: We investigated CTAs launched in all countries through Google, Google Scholar, and PubMed. We experimented with all apps that could be installed and compiled information about apps that could not be installed or used by consulting official websites and previous literature. We compared the information collected by us on CTAs with relevant previous literature to understand and analyze the data.

Results: After screening 166 COVID-19 apps developed in 197 countries worldwide, we selected 98 (59%) apps from 95 (48.2%) countries, of which 63 (66.3%) apps were usable. The methods of contact tracing are divided into 3 main categories: Bluetooth, geolocation, and QR codes. At the technical level, CTAs face 3 major problems. First, the distance and time for Bluetooth- and geolocation-based CTAs to record contact are generally set to 2 meters and 15 minutes; however, this distance should be lengthened, and the time should be shortened for more infectious variants. Second, Bluetooth- or geolocation-based CTAs also face the problem of lack of accuracy. For example, individuals in 2 adjacent vehicles during traffic jams may be at a distance of ≤2 meters to make the CTA trace contact, but the 2 users may actually be separated by car doors, which could prevent transmission and infection. In addition, we investigated infection detection rates in 33 countries, 16 (48.5%) of which had significantly low infection detection rates, wherein CTAs could have lacked effectiveness in reducing virus propagation. Regarding policy, CTAs in most countries can only be used in their own countries and lack interoperability among other countries. In addition, 7 countries have already discontinued CTAs, but we believe that it was too early to discontinue them. Regarding user acceptance, 28.6% (28/98) of CTAs had no official source of information that could reduce user acceptance.

Conclusions: We surveyed all CTAs worldwide, identified their technological policy and acceptance issues, and provided solutions for each of the issues we identified. This study aimed to provide useful guidance and suggestions for updating the existing CTAs and the subsequent development of new CTAs.

Keywords: COVID-19; contact-tracing app; digital contact tracing; mobile phone.

MeSH terms

  • COVID-19*
  • Contact Tracing / methods
  • Humans
  • Mobile Applications*
  • Pandemics / prevention & control
  • Policy