The synergistic interaction landscape of chromatin regulators reveals their epigenetic regulation mechanisms across five cancer cell lines

Comput Struct Biotechnol J. 2022 Sep 12:20:5028-5039. doi: 10.1016/j.csbj.2022.09.008. eCollection 2022.

Abstract

Chromatin regulators (CRs) regulate the gene transcription process through combinatorial patterns, which currently remain obscure for pan-cancer. This study identified the interaction of CRs and constructed CR-CR interaction networks across five tumor cell lines. The global interaction analysis revealed that CRs tend to function in synergistically. In addition, common and specific CRs in interaction networks were identified, and the epigenetic processes of these CRs in regulating gene transcription were analyzed. Common CRs have conserved binding sites but cooperate with different partners in multiple tumor cell lines. They also participate in gene transcription regulation, through mediation of different histone modifications (HMs). Specific CRs, ATF2 and PRDM10 were found to distinguish liver cancer samples with different prognosis. PRDM10 participates in gene transcription regulation, by exertion of influence on the DNA methylation level of liver cancer. Through analysis of the edges in the CR-CR interaction networks, it was found EP300-TAF1 has genome-wide distinct signaling patterns, which exhibit different effects on downstream targets. This analysis provides novel insights for the understanding of synergistic mechanism of CRs function, as controllers of gene transcription across cancer types.

Keywords: Chromatin regulators; Combinatorial pattern; Pan-cancer; Transcriptional regulation.