Flapping dynamics of an inverted flag behind a cylinder

Bioinspir Biomim. 2022 Oct 27;17(6). doi: 10.1088/1748-3190/ac96b9.

Abstract

The inverted flag configuration is inspired by biological structures (e.g. leaves on a tree branch), showing rich dynamics associated with instabilities at lower flow speeds than the regular flag configuration. In the biological counterpart, the arrangement of leaves and twigs on foliage creates a complex interacting environment that promotes certain dynamic fluttering modes. While enabling a large amplitude response for reduced flow speeds is advantageous in emerging fields such as energy harvesting, still, little is known about the consequence of such interactions. In this work, we numerically study the canonical bio-inspired problem of the flow-structural interaction of a 2D inverted flag behind a cylindrical bluff body, mimicking a leaf behind a tree branch, to investigate its distinct fluttering regimes. The separation distance between the cylinder and flag is gradually modified to determine the effective distance beyond which small-amplitude or large-amplitude flapping occurs for different flow velocities. It is shown that the flag exhibits a periodic large amplitude-low frequency response mode when the cylinder is placed at a sufficiently large distance in front of the flag. At smaller distances, when the flag is within the immediate wake of the cylinder, the flag undergoes a high frequency-small amplitude response. Finally, the flag's piezoelectric power harvesting capability is investigated numerically and experimentally for varying geometrical and electrical parameters associated with these two conditions. Two separate optimal response modes with the highest energy output have also been identified.

Keywords: energy harvesting; flag flapping; inverted flag; piezoelectric; vortex dynamics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomechanical Phenomena*