Nanocomposite hydrogels for biomedical applications

Bioeng Transl Med. 2022 Apr 9;7(3):e10315. doi: 10.1002/btm2.10315. eCollection 2022 Sep.

Abstract

Nanomaterials' unique structures at the nanometer level determine their incredible functions, and based on this, they can be widely used in the field of nanomedicine. However, nanomaterials do possess disadvantages that cannot be ignored, such as burst release, rapid elimination, and poor bioadhesion. Hydrogels are scaffolds with three-dimensional structures, and they exhibit good biocompatibility and drug release capacity. Hydrogels are also associated with disadvantages for biomedical applications such as poor anti-tumor capability, weak bioimaging capability, limited responsiveness, and so on. Incorporating nanomaterials into the 3D hydrogel network through physical or chemical covalent action may be an effective method to avoid their disadvantages. In nanocomposite hydrogel systems, multifunctional nanomaterials often work as the function core, giving the hydrogels a variety of properties (such as photo-thermal conversion, magnetothermal conversion, conductivity, targeting tumor, etc.). While, hydrogels can effectively improve the retention effect of nanomaterials and make the nanoparticles have good plasticity to adapt to various biomedical applications (such as various biosensors). Nanocomposite hydrogel systems have broad application prospects in biomedicine. In this review, we comprehensively summarize and discuss the most recent advances of nanomaterials composite hydrogels in biomedicine, including drug and cell delivery, cancer treatment, tissue regeneration, biosensing, and bioimaging, and we also briefly discussed the current situation of their commoditization in biomedicine.

Keywords: bioimaging; biosensing; cancer treatment; drug and cell delivery; nanocomposite hydrogels; tissue regeneration.

Publication types

  • Review