Perceptual bias contextualized in visually ambiguous stimuli

Cognition. 2023 Jan:230:105284. doi: 10.1016/j.cognition.2022.105284. Epub 2022 Sep 26.

Abstract

The visual appearance of an object is a function of stimulus properties as well as perceptual biases imposed by the observer. The context-specific trade-off between both can be measured accurately in a perceptual judgment task, involving grouping by proximity in ambiguous dot lattices. Such grouping depends lawfully on a stimulus parameter of the dot lattices known as their aspect ratio (AR), whose effect is modulated by a perceptual bias representing the preference for a cardinal orientation. In two experiments, we investigated how preceding context can lead to bias modulation, either in a top-down fashion via visual working memory (VWM) or bottom-up via sensory priming. In Experiment 1, we embedded the perceptual judgment task in a change detection paradigm and studied how the factors of VWM load (complexity of the memory array) and content (congruency in orientation to the ensuing dot lattice) affect the prominence of perceptual bias. A robust vertical orientation bias was observed, which was increased by VWM load and modulated by congruent VWM content. In Experiment 2, dot lattices were preceded by oriented primes. Here, primes regardless of orientation elicited a vertical orientation bias in dot lattices compared to a neutral baseline. Taken together, the two experiments demonstrate that top-down context (VWM load and content) effectively controls orientation bias modulation, while bottom-up context (i.e., priming) merely acts as an undifferentiated trigger to perceptual bias. These findings characterize the temporal context sensitivity of Gestalt perception, shed light on the processes responsible for different perceptual outcomes of ambiguous stimuli, and identify some of the mechanisms controlling perceptual bias.

Keywords: Bottom-up temporal context; Grouping by proximity; Orientation; Perceptual bias; Priming; Top-down temporal context; Visual working memory.

MeSH terms

  • Bias
  • Humans
  • Memory, Short-Term*
  • Visual Perception*