Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity

Sci Adv. 2022 Sep 30;8(39):eabq4456. doi: 10.1126/sciadv.abq4456. Epub 2022 Sep 28.

Abstract

Aqueous zinc flow batteries (AZFBs) with high power density and high areal capacity are attractive, both in terms of cost and safety. A number of fundamental challenges associated with out-of-plane growth and undesirable side reactions on the anode side, as well as sluggish reaction kinetics and active material loss on the cathode side, limit practical deployment of these batteries. We investigated artificial interphases created using a simple electrospray methodology as a strategy for addressing each of these challenges. The effectiveness of the electrospray interphases in full cell zinc-iodine flow batteries was evaluated and reported; it is possible to simultaneously achieve high power density [115 milliwatts per square centimeter (mW/cm2)] and high areal capacity [25 milliampere hour per square centimeter (mA·hour/cm2)]. Last, we extended it to aqueous zinc-bromine and zinc-vanadium flow batteries of contemporary interest. It is again found that high power density (255 and 260 mW/cm2, respectively) and high areal capacity (20 mA·hour/cm2) can be simultaneously achieved in AZFBs.