Green and Scalable Template-Free Strategy to Fabricate Honeycomb-Like Interconnected Porous Micro-Sized Layered Sb for High-Performance Potassium Storage

Small. 2022 Nov;18(46):e2204552. doi: 10.1002/smll.202204552. Epub 2022 Sep 27.

Abstract

The tremendous volume change and severe pulverization of micro-sized Sb anode generate no stable capacity in potassium-ion batteries (PIBs). The honeycomb-like porous structure provides free spaces to accommodate its volume expansion and offers efficient ion transport, yet complex synthesis and low yield limits its large-scale application. Here, a green, scalable template-free method for designing a 3D honeycomb-like interconnected porous micro-sized Sb (porous-Sb) is proposed. Its honeycomb-like porous formation mechanism is also verified. Under hydrothermal conditions, Sb reacts with water and dissolved oxygen in water, undergoing non-homogeneous and continuous corrosion at grain boundaries, and producing soluble H2 Sb2 O6 (H2 O), which regulates the porous structure of Sb by controlling reaction time. Benefiting from its porous structure and micron size, porous-Sb anode displays large gravimetric and volumetric capacities with 655.5 mAh g-1 and 2,001.9 mAh cm-3 at 0.05 A g-1 and superior rate performance of 441.9 mAh g-1 at 2.0 A g-1 in PIBs. Furthermore, ex situ characterization and kinetic analysis uncover the small volume expansion and fast K+ reaction kinetics of porous Sb during potassiation/depotassiation, originating from its large electrolyte contact area and internal expansion mechanism. It verifies a green, scalable template-free strategy to construct honeycomb-like porous metals for energy storage and conversion.

Keywords: electrochemical energy storage; green methods; honeycomb-like porous structures; porous Sb; potassium-ion batteries; template-free methods.