Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes

Langmuir. 2022 Oct 11;38(40):12235-12247. doi: 10.1021/acs.langmuir.2c01865. Epub 2022 Sep 27.

Abstract

Supercapacitors are electrochemical energy storage devices having high capacitance, high power density, long cycle life, low cost, easy maintenance, and negligible environmental pollution. The formation of an electric double layer at the electrode-electrolyte interface is mostly responsible for supercapacitors' energy storage. The simulation study of equilibrium electric double-layer capacitance (EDLC) in 3D arranged mesoporous carbon electrodes with a simple cubic morphology and interdigitated electrodes has been done. Continuum theory has been utilized to study the underlying processes involved in EDLC. Interfacial polarization and ion crowding depend on the electrode's critical thickness. Porosity increases the capacitance due to the increase in the electrode surface area. The diffuse-layer specific capacitance of ordered mesoporous carbon electrodes in a (C2H5)4NBF4/propylene carbonate organic electrolyte is in the range of 3.2-13.3 μF cm-2, varying according to the electrode thickness. The Stern-layer specific capacitance is 167.6 μF cm-2, and total equilibrium EDLC is in the range of 3.1-12.3 μF cm-2. The effect of the electric field at the electrode-electrolyte interface on reducing electrolyte permittivity has also been discussed. The EDLC of carbonized interdigitated electrodes is analyzed in a 6 M KOH electrolyte. The diffuse-layer specific capacitance ranges from 118.7 to 352.0 μF cm-2 depending on the width of the interdigitated electrodes. The Stern-layer specific capacitance is 91.2 μF cm-2, and the total EDLC value is 51.6-72.4 μF cm-2. The modeling and simulation approach can be applied to different mesoporous electrodes by varying the supercapacitor component's parameters and geometry.