Enzyme-Assisted Extraction of Phenolics from Capparis spinosa Fruit: Modeling and Optimization of the Process by RSM and ANN

ACS Omega. 2022 Sep 10;7(37):33031-33038. doi: 10.1021/acsomega.2c02850. eCollection 2022 Sep 20.

Abstract

The current study intends to appraise the effect of enzyme complexes on the recovery of phenolics from Capparis spinosa fruit extract using the response surface methodology (RSM) and artificial neural networking (ANN). Enzymatic treatment of C. spinosa fruit extract was optimized under a set of conditions (enzyme concentration, pH, temperature, and time) against each enzyme formulation such as Kemzyme Plus Dry, Natuzyme, and Zympex-014. The extract yield observed for Kemzyme Plus Dry (42.00%) was noted to be higher than those for Zympex-014 (39.80%) and Natuzyme (38.50%). Based on the higher results, the values of Kemzyme Plus Dry-based extract were further employed in different parameters of RSM. The F-value (16.03) and p-values (<0.05) implied that the selected model is significant. Similarly, the higher values for the coefficient of determination (R 2) at 0.9740 and adjusted R 2 (adj. R 2) at 0.9132 indicated that the model is significant in relation to given experimental parameters. ANN-predicted values were very close to the experimental values, which demonstrated the applicability of the ANN model. Antioxidant activities also exhibited profound results in terms of total phenolic content values (24.76 mg GAE/g), total flavonoid content values (24.56 mg CE/g), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (IC50) (5.12 mg/mL). Scanning electron microscopy revealed that after enzymatic hydrolysis, the cell walls were broken as compared with nonhydrolyzed materials. Five phenolics, namely, quercetin, m-coumaric acid, sinapic acid, kaempferol, and p-coumaric acid, were identified from C. spinosa extract by gas chromatography-mass spectrometry (GC/MS). The results of this study reveal that the proposed optimization techniques, using Kemzyme Plus Dry among others, had a positive effect on the recovery of phenolic bioactive compounds and thus increased the antioxidant potential of C. spinosa fruit extract.