Synthesis of Novel Hierarchical Rod-like Mg-Al bimetallic oxides for enhanced removal of uranium (VI) from wastewater

Chemosphere. 2022 Dec;308(Pt 3):136546. doi: 10.1016/j.chemosphere.2022.136546. Epub 2022 Sep 21.

Abstract

As one of the most frequently used nuclides for nuclear fuel and toxic heavy metal in polluted solutions, the removal and recovery of U(VI) from wastewater is significant both for nuclear energy and human health. Herein, the novel hierarchical Mg-Al bimetallic oxides (Mg/Al-BOs) were successfully synthesized by a facile hydrothermal-lyophilization-calcination method for enhanced removal of uranium (U(VI)) from wastewater. The as-synthesized Mg/Al-BOs adsorbents were characterized by a variety of techniques including SEM-EDS, XRD, high temperature in-situ XRD, TG-DSC, N2 adsorption-desorption isotherm and XPS. Batch experiments including the effects of pH, hydration species, interfering ions on U(VI) removal, adsorption kinetics, isotherms and recyclability were systematically studied. Results showed that calcined Mg/Al-BO-24 inherited the hierarchical structure from its hydrotalcite-like precursor and grew the bimetallic oxides of Al2O3/MgO into a 3D rod-like and mesoporous network with the large BET surface area (472.4 m2∙g-1), which presented abundant binding sites on the surface and contributed to preventing the aggregation of Al2O3/MgO nanoparticles, allowing the fast uptake of U(VI) for equilibrium within 180 min and the significant increase of maximum adsorption capacity to 411.5 mg∙g-1. The uptake kinetics and isotherms of U(VI) removal could be well represented by the pseudo-second-order and Langmuir models, respectively. Further, it was demonstrated that U(VI) removal by Mg/Al-BO-24 was less influenced by coexisting cations and the regeneration cycles, indicating the excellent selectivity and reusability for U(VI) by the as-prepared composites. Based on the XPS analysis results, the mechanisms for U(VI) sorption onto the Mg/Al-BO-24 were mainly ascribed to the synergistic surface complexation and electrostatic interaction. These results suggested that Mg/Al-BO-24 prepared by the method reported here was available for developing other multiple metal oxides and would be a promising material for the effective treatment of wastewater with U(VI)-contamination.

Keywords: Adsorption; Bimetallic oxides; Hierarchical structure; Mechanism; Toxic heavy metal; Uranium.

MeSH terms

  • Adsorption
  • Cations
  • Humans
  • Hydrogen-Ion Concentration
  • Kinetics
  • Magnesium Oxide
  • Oxides / chemistry
  • Uranium* / analysis
  • Wastewater

Substances

  • Cations
  • Oxides
  • Waste Water
  • Magnesium Oxide
  • Uranium