In-Vehicle Visible Light Communications Data Transmission System Using Optical Fiber Distributed Light: Implementation and Experimental Evaluation

Sensors (Basel). 2022 Sep 6;22(18):6738. doi: 10.3390/s22186738.

Abstract

Visible light communications emerges as a promising wireless communication technology that has been found suitable for numerous indoor and outdoor applications. In this article, a new in-vehicle VLC system is designed, implemented, and experimentally evaluated. The purpose of this new system is to provide car passengers with optical wireless communications. The proposed system consists of a VLC emitter integrated into the vehicle's ambient lighting system and a mobile VLC receiver. Unlike any previous works, this article proposes a VLC emitter in which the light from a 3 W LED is distributed on a 2 square meter surface using 500 optical fibers whose main purpose is a decorative one. The proposed prototype has been implemented on a car and evaluated in relevant working conditions. The experimental evaluation of the proposed system has demonstrated the viability of the proposed concept and showed a data rate of 250 kb/s while providing a BER lower than 10-7. As far as we know, the proposed concept is totally new in the VLC literature, opening a new area of utilization for VLC technology: using VLC with optical fiber distributed light.

Keywords: in-car communications; in-vehicle communications; optical communications; optical fiber distributed light; traffic safety; visible light communication; wireless optical communications.