An Influence of Oxygen Flow Rate and Spray Distance on the Porosity of HVOF Coating and Its Effects on Corrosion-A Review

Materials (Basel). 2022 Sep 12;15(18):6329. doi: 10.3390/ma15186329.

Abstract

Thermal spray coating, exceptionally high-velocity oxyfuel (HVOF), improves the corrosion resistance and wear of metal. Coating parameters play a vital role in the properties of the coating. The quality of coating can be increased by selecting appropriate coating parameters. In the case of HVOF, the oxygen flow rate and spray distance are the most significant parameters that directly influence the porosity and corrosion resistance of the coating. Porosity is essential in thermal barrier coatings for low thermal conductivity, but there is a limit of porosity beyond which it can cause failure. Hence, understanding the effects of these parameters is essential to evaluate and further minimize the porosity in order to improve the corrosion resistance and durability of the thermal barrier coating. This article reviews hot corrosion in thermal barrier coatings, the stages of corrosion, the importance of spray parameters, and the effect of the oxygen flow rate and spray distance on the corrosion resistance of HVOF-sprayed coatings. Afterwards, the coating materials, the substrate, the flow rate of oxygen, the spray distance, and the fuel used during the HVOF spraying process from recent articles are summarized. In summary, this review compares the flow rate of oxygen and the spray distance with the corrosion capacity of the coating under different corrosive environments and materials to optimize these parameters for high-quality coating, which would sustain under high temperatures for future applications.

Keywords: high-velocity oxyfuel; hot corrosion sulfidation; oxidation; thermal spray coating.

Publication types

  • Review