High-Efficiency Iron Extraction from Low-Grade Siderite via a Conveyor Bed Magnetization Roasting-Magnetic Separation Process: Kinetics Research and Applications

Materials (Basel). 2022 Sep 8;15(18):6260. doi: 10.3390/ma15186260.

Abstract

Upgrading and utilizing low-grade iron ore is of great practical importance to improve the strategic security of the iron ore resource supply. In this study, a thermal analysis-infrared (IR) analysis-in-situ IR method was used to investigate the reaction mechanism and kinetics of Daxigou siderite. Experiments were conducted using a conveyor bed magnetization roasting process (CBMRP) to investigate the magnetization of siderite. Multi-stage magnetic separation processes were adopted to extract magnetite. The results show that simultaneously the iron carbonate in siderite decomposes, and magnetite is formed between 364 °C and 590 °C under both inert and reducing atmospheres. The activation energy of the magnetization roasting reaction is 106.1 kJ/mol, consistent with a random nucleation and growth reaction mechanism. Magnetization roasting at 750-780 °C for approximately 3.5 s in the CBMRP results in a magnetic conversion rate of >0.99 of the iron minerals in the siderite. A beneficiation process of one roughing, one sweeping, and three cleaning processes was adopted. A dissociation particle size of -400 mesh accounting for 94.78%, a concentrate iron grade of 62.8 wt.%, and a recovery of 68.83% can be obtained. Overall, a theoretical and experimental basis is presented for the comprehensive utilization of low-grade siderite.

Keywords: conveyor bed; in-situ infrared; kinetics; magnetic separation; magnetization roasting; siderite.