Genome-Wide Association Study in Bread Wheat Identifies Genomic Regions Associated with Grain Yield and Quality under Contrasting Water Availability

Int J Mol Sci. 2022 Sep 12;23(18):10575. doi: 10.3390/ijms231810575.

Abstract

The objectives of this study were to identify genetic loci in the bread wheat genome that would influence yield stability and quality under water stress, and to identify accessions that can be recommended for cultivation in dry and hot regions. We performed a genome-wide association study (GWAS) using a panel of 232 wheat accessions spanning diverse ecogeographic regions. Plants were evaluated in the Israeli Northern Negev, under two environments: water-limited (D; 250 mm) and well-watered (W; 450 mm) conditions; they were genotyped with ~71,500 SNPs derived from exome capture sequencing. Of the 14 phenotypic traits evaluated, 12 had significantly lower values under D compared to W conditions, while the values for two traits were higher under D. High heritability (H2 = 0.5-0.9) was observed for grain yield, spike weight, number of grains per spike, peduncle length, and plant height. Days to heading and grain yield could be partitioned based on accession origins. GWAS identified 154 marker-trait associations (MTAs) for yield and quality-related traits, 82 under D and 72 under W, and identified potential candidate genes. We identified 24 accessions showing high and/or stable yields under D conditions that can be recommended for cultivation in regions under the threat of global climate change.

Keywords: GWAS; Triticum aestivum L.; grain protein content (GPC); grain yield; marker trait association (MTA); quantitative trait loci (QTL); water-limited.

MeSH terms

  • Bread
  • Edible Grain / genetics
  • Genome-Wide Association Study*
  • Genomics
  • Phenotype
  • Quantitative Trait Loci
  • Triticum* / genetics