Probabilistic Genotyping of Single Cell Replicates from Mixtures Involving First-Degree Relatives Prevents the False Inclusions of Non-Donor Relatives

Genes (Basel). 2022 Sep 15;13(9):1658. doi: 10.3390/genes13091658.

Abstract

Analysis of complex DNA mixtures comprised of related individuals requires a great degree of care due to the increased risk of falsely including non-donor first-degree relatives. Although alternative likelihood ratio (LR) propositions that may aid in the analysis of these difficult cases can be employed, the prior information required for their use is not always known, nor do these alternative propositions always prevent false inclusions. For example, with a father/mother/child mixture, conditioning the mixture on the presence of one of the parents is recommended. However, the definitive presence of the parent(s) is not always known and an assumption of their presence in the mixture may not be objectively justifiable. Additionally, the high level of allele sharing seen with familial mixtures leads to an increased risk of underestimating the number of contributors (NOC) to a mixture. Therefore, fully resolving and identifying each of the individuals present in familial mixtures and excluding related non-donors is an important goal of the mixture deconvolution process and can be of great investigative value. Here, firstly, we further investigated and confirmed the problems encountered with standard bulk analysis of familial mixtures and demonstrated the ability of single cell analysis to fully distinguish first-degree relatives (FDR). Then, separation of each of the individual donors via single cell analysis was carried out by a combination of direct single cell subsampling (DSCS), enhanced DNA typing, and probabilistic genotyping, and applied to three complex familial 4-person mixtures resulting in a probative gain of LR for all donors and an accurate determination of the NOC. Significantly, non-donor first-degree relatives that were falsely included (LRs > 102−108) by a standard bulk sampling and analysis approach were no longer falsely included using DSCS.

Keywords: first-degree relatives; mixture deconvolution; probabilistic genotyping; single-cell analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Child
  • DNA Fingerprinting* / methods
  • DNA* / genetics
  • Genotype
  • Humans
  • Likelihood Functions

Substances

  • DNA

Grants and funding

The authors would like to thank the State of Florida for initial seed funding for this project. The funders had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.