Effect of Tennis Expertise on Motion-in-Depth Perception at Different Speeds: An Event-Related Potential Study

Brain Sci. 2022 Aug 30;12(9):1160. doi: 10.3390/brainsci12091160.

Abstract

Tennis experts need to extract effective visual information from a sphere in high-speed motion, in which motion-in-depth perception plays an important role. The purpose of the current study was to investigate the impact of sphere speed and tennis expertise on motion-in-depth perception by using the expert-novice task paradigm along with event-related potential (ERP) technology. The study also explored differences in behavior and electroencephalogram (EEG) characteristics between tennis experts and novices. Results show that faster sphere movement led to shorter response times and a lower accuracy rate. The P1 component in the occipital-temporal region showed that the expert group activated earlier and were stronger when the sphere was far away. The latent period of P2 in the occipital region was significantly shorter in the expert group in comparison to the novice group. Faster speed led to the induction of increased P300 volatility and a significant increase in latency. The findings of the current study show that the speed of the sphere movement affects the invocation and allocation of cognitive resources in the process of motion-in-depth perception, irrespective of whether the athletes were experts or novices. There is a special effect in the process of motion-in-depth perception for experts, mainly because attention resources are invested earlier in experts rather than novices.

Keywords: ERP; expert–novice paradigm; motion-in-depth perception; speed; tennis expertise.