Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar

Toxics. 2022 Sep 11;10(9):534. doi: 10.3390/toxics10090534.

Abstract

Humans and ecosystems are severely damaged by the existence of As(III/V) in the aquatic environment. Herein, an advanced Fe3O4@SFBC (Fe3O4-sunflower straw biochar) adsorbent was fabricated by co-precipitation method with sunflower straw biochar (SFBC) prepared at different calcination temperatures and different SFBC/Fe mass ratios as templates. The optimal pH for As(III/V) removal was investigated, and Fe3O4@SFBC shows removal efficiency of 86.43% and 95.94% for As(III) and As(V), respectively, at pH 6 and 4. The adsorption effect of calcining and casting the biochar-bound Fe3O4 obtained at different temperatures and different SFBC/Fe mass ratios were analyzed by batch experiments. The results show that when the SFBC biochar is calcined at 450 °C with an SFBC/Fe mass ratio of 1:5, the adsorption of As(III) and As(V) reaches the maximum, which are 121.347 and 188.753 mg/g, respectively. Fe3O4@SFBC morphology, structure, surface functional groups, magnetic moment, and internal morphology were observed by XRD, FTIR, SEM, TEM, and VSM under optimal working conditions. The material shows a small particle size in the range of 12-14 nm with better magnetic properties (54.52 emu/g), which is suitable for arsenic removal. The adsorption mechanism of As(III/V) by Fe3O4@SFBC indicates the presence of chemisorption, electrostatic, and complexation. Finally, the material was used for five consecutive cycles of adsorption-desorption experiments, and no significant decrease in removal efficiency was observed. Therefore, the new adsorbent Fe3O4@SFBC can be efficiently used for arsenic removal in the aqueous system.

Keywords: As(III/V); Fe3O4; adsorption; magnetic composite; sunflower straw biochar.