Iron carbide nanoplatelets: colloidal synthesis and characterization

Nanoscale Adv. 2019 Oct 7;1(11):4476-4480. doi: 10.1039/c9na00526a. eCollection 2019 Nov 5.

Abstract

Iron carbide nanoplatelets with an orthorhombic Fe3C structure were synthesized following a simple liquid chemical approach. The formation of the carbide phases was shown to depend on the presence of a long chain diol and the reaction temperature. Confirmation of the iron carbide phases and structural characterization was made by X-ray diffraction (XRD) and Mössbauer spectroscopy. Particle morphology was characterized by transmission electron microscopy (TEM) and HR-TEM and the magnetic properties were measured with magnetometry (VSM). The sample with the Fe3C phase shows a ferromagnetic behavior with a magnetization of 139 emu g-1 under a 30 kOe applied field. The simple methodology presented here for producing iron carbide nanoplatelets has promising application in the biomedical and catalyst industries.