Acute Intraocular Pressure Responses to Resistance Training in Combination With Blood Flow Restriction

Res Q Exerc Sport. 2023 Dec;94(4):1110-1116. doi: 10.1080/02701367.2022.2119197. Epub 2022 Sep 21.

Abstract

Objective: To determine the effect of blood flow restriction (BFR) applied to the legs at different pressures (40% and 60%) on intraocular pressure (IOP) during the execution of ten repetitions maximum (10RM) in the half-squat exercise. Methods: Quasi-experimental, prospective study with 17 healthy physically active subjects (9 males and 8 females; 24.1 ± 4.2 years). Two sessions were conducted. The 10RM load was determined in the first session. The second session consisted of 10RM under three BFR conditions (no-BFR, 40%-BFR, and 60%-BFR) that were applied in random order. IOP was measured before each condition, immediately after each repetition, and after 1 minute of passive recovery. A two-way repeated-measures ANOVA (restriction type [no-BFR, 40%-BFR, and 60%-BFR] x measurement point [basal, repetitions 1-10, and recovery]) was applied on the IOP measurements. Results: A significant main effect of the BFR condition (p = .022, ƞp2 = 0.21) was observed due to the significantly higher mean IOP values for the 60%-BFR (19.0 ± 0.7 mmHg) compared to the no-BFR (18.0 ± 0.8 mmHg; p = .048, dunb = 1.30). Non-significant differences with a large effect size were reached between 60%-BFR and 40%-BFR (18.1 ± 0.8 mmHg; p = .081, dunb = 1.16) and between no-BFR and 40%-BFR (p = .686, dunb = 0.18). IOP increased approximately 3-4 mmHg from baseline to the last repetition. Conclusions: Low-pressure BFR (40%-BFR) in combination with moderate-load (10RM load) resistance exercise could be an effective and safe strength training strategy while avoiding IOP peaks associated with heavy-load resistance exercises. These findings incorporate novel insights into the most effective exercise strategies in individuals who need to maintain stable IOP levels (e.g., glaucoma patients).

Keywords: Glaucoma; Kaatsu; squat exercise; strength.

MeSH terms

  • Female
  • Hemodynamics
  • Humans
  • Intraocular Pressure
  • Male
  • Muscle, Skeletal / physiology
  • Prospective Studies
  • Regional Blood Flow / physiology
  • Resistance Training*