Sphingomyelinases in retinas and optic nerve heads: Effects of ocular hypertension and ischemia

Exp Eye Res. 2022 Nov:224:109250. doi: 10.1016/j.exer.2022.109250. Epub 2022 Sep 16.

Abstract

Sphingomyelinases (SMase), enzymes that catalyze the hydrolysis of sphingomyelin to ceramide, are important sensors for inflammatory cytokines and apoptotic signaling. Studies have provided evidence that increased SMase activity can contribute to retinal injury. In most tissues, two major SMases are responsible for stress-induced increases in ceramide: acid sphingomyelinase (ASMase) and Mg2+-dependent neutral sphingomyelinase (NSMase). The purposes of the current study were to determine the localization of SMases and their substrates in the retina and optic nerve head and to investigate the effects of ocular hypertension and ischemia on ASMase and NSMase activities. Tissue and cellular localization of ASMase and NSMase were determined by immunofluorescence imaging. Tissue localization of sphingomyelin in retinas was further determined by Matrix-Assisted Laser Desorption/Ionization mass spectrometry imaging. Tissue levels of sphingomyelins and ceramide were determined by liquid chromatography with tandem mass spectrometry. Sphingomyelinase activities under basal conditions and following acute ischemic and ocular hypotensive stress were measured using the Amplex Red Sphingomyelinase Assay Kit. Our data show that ASMase is in the optic nerve head and the retinal ganglion cell layer. NSMase is in the optic nerve head, photoreceptor and retinal ganglion cell layers. Both ASMase and NSMase were identified in human induced pluripotent stem cell-derived retinal ganglion cells and optic nerve head astrocytes. The retina and optic nerve head each exhibited unique distribution of sphingomyelins with the abundance of very long chain species being higher in the optic nerve head than in the retina. Basal activities for ASMase in retinas and optic nerve heads were 54.98 ± 2.5 and 95.6 ± 19.5 mU/mg protein, respectively. Ocular ischemia significantly increased ASMase activity to 86.2 ± 15.3 mU/mg protein in retinas (P = 0.03) but not in optic nerve heads (81.1 ± 15.3 mU/mg protein). Ocular hypertension significantly increased ASMase activity to 121.6 ± 7.3 mU/mg protein in retinas (P < 0.001) and 267.0 ± 66.3 mU/mg protein in optic nerve heads (P = 0.03). Basal activities for NSMase in retinas and optic nerve heads were 12.3 ± 2.1 and 37.9 ± 8.7 mU/mg protein, respectively. No significant change in NSMase activity was measured following ocular ischemia or hypertension. Our results provide evidence that both ASMase and NSMase are expressed in retinas and optic nerve heads; however, basal ASMase activity is significantly higher than NSMase activity in retinas and optic nerve heads. In addition, only ASMase activity was significantly increased in ocular ischemia or hypertension. These data support a role for ASMase-mediated sphingolipid metabolism in the development of retinal ischemic and hypertensive injuries.

Keywords: Acid sphingomyelinase; Ischemia; Neuroprotection; Neutral sphingomyelinase; Ocular hypertension; Sphingolipids.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ceramides / metabolism
  • Cytokines
  • Humans
  • Hypertension*
  • Induced Pluripotent Stem Cells* / metabolism
  • Ischemia
  • Ocular Hypertension*
  • Optic Disk* / metabolism
  • Retina / metabolism
  • Sphingomyelin Phosphodiesterase / metabolism
  • Sphingomyelins / metabolism
  • Sphingomyelins / pharmacology

Substances

  • Sphingomyelin Phosphodiesterase
  • Sphingomyelins
  • Ceramides
  • Cytokines