Spatio-temporally differentiated impacts of temperature inversion on surface PM2.5 in eastern China

Sci Total Environ. 2023 Jan 10:855:158785. doi: 10.1016/j.scitotenv.2022.158785. Epub 2022 Sep 16.

Abstract

Temperature inversion (TI) is one of the meteorological conditions that significantly affect regional air quality. Knowledge gap regarding the impacts of TI on surface PM2.5 in different topographies still existed. In the present study, the occurrence frequency, temperature lapse rate (TLR), depth, and the diurnal variations of TI, surface-based TI (SBTI), elevated TI (ElTI), and multiple layers of TIs (MultiTI) and their impacts on near-surface PM2.5 concentrations over eastern China that covers a range of topographies and climates, are systematically investigated based on global reanalysis ERA5 and the nationwide monitoring PM2.5 dataset from 2014 to 2020. TIs occurred mostly in the early morning. Different types of TIs present distinctive seasonal and spatial patterns. The majority of SBTIs and ElTIs occurred during nighttime in northern China and daytime in southern China, respectively, as the result of their formation mechanisms. SBTIs usually had larger TLR while ElTIs had deeper depth. SBTIs showed strong enhancement effects on PM2.5 concentration over the study domain while ElTIs showed more obvious impacts on northern nocturnal PM2.5. The peak time of PM2.5 was found around 18:00-22:00 LST, and TLR and depth of TIs are thought to be more relevant to PM2.5 peak concentration due to their coincident peak times. The strength of TIs is therefore more crucial in regulating PM2.5 than its occurrence frequency. Based on statistical analysis, our study provided a large picture of the generic spatiotemporal patterns of TIs and illustrated the impacts of different TIs on surface PM2.5 pollution on a diurnal basis. For a deeper understanding of the formation of PM2.5 pollution, more attention needs to be paid to the nocturnal PM2.5 not only at surface level but also at higher levels in the presence of TIs.

Keywords: Air pollution; China; Meteorology; PM(2.5); Temperature inversion.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • China
  • Environmental Monitoring
  • Particulate Matter / analysis
  • Seasons
  • Temperature

Substances

  • Particulate Matter
  • Air Pollutants