Knockdown of Na,K-ATPase β-subunits in Oncopeltus fasciatus induces molting problems and alterations in tracheal morphology

Insect Sci. 2023 Apr;30(2):375-397. doi: 10.1111/1744-7917.13117. Epub 2022 Oct 11.

Abstract

The ubiquitously expressed transmembrane enzyme Na,K-ATPase (NKA) is vital in maintaining functionality of cells. The association of α- and β-subunits is believed to be essential for forming a functional enzyme. In the large milkweed bug Oncopeltus fasciatus four α1-paralogs and four β-subunits exist that can associate into NKA complexes. This diversity raises the question of possible tissue-specific distribution and function. While the α1-subunits are known to modulate cardenolide-resistance and ion-transport efficiency, the functional importance of the β-subunits needed further investigation. We here characterize all four different β-subunits at the cellular, tissue, and whole organismal scales. A knockdown of different β-subunits heavily interferes with molting success resulting in strongly hampered phenotypes. The failure of ecdysis might be related to disrupted septate junction (SJ) formation, also reflected in β2-suppression-induced alteration in tracheal morphology. Our data further suggest the existence of isolated β-subunits forming homomeric or β-heteromeric complexes. This possible standalone and structure-specific distribution of the β-subunits predicts further, yet unknown pump-independent functions. The different effects caused by β knockdowns highlight the importance of the various β-subunits to fulfill tissue-specific requirements.

Keywords: RNAi; ecdysis; insect Na+/K+-ATPase; protein distribution; septate junctions; tissue-specific function.

MeSH terms

  • Animals
  • Heteroptera* / genetics
  • Molting
  • Sodium-Potassium-Exchanging ATPase* / genetics
  • Sodium-Potassium-Exchanging ATPase* / metabolism

Substances

  • Sodium-Potassium-Exchanging ATPase