Significance of different milling methods on white proso millet flour physicochemical, rheological, and baking properties

J Texture Stud. 2023 Feb;54(1):92-104. doi: 10.1111/jtxs.12717. Epub 2022 Oct 4.

Abstract

Proso millet is a nutritious, sustainable, and gluten free food which is currently underutilized. They can be incorporated into the grain industry and provide much needed healthy alternatives. Efficient grinding method should be adopted for easy incorporation. This study aimed to investigate the effect of three different methods of grinding namely, roller milling (RM), pin milling (PM), and hammer milling (HM) on proso millet flour rheology and baking properties for food application. The milling flow sheet was developed toward the production of the quality whole grain flour. The particle size distribution of all the flours showed bi-modal distribution except for the RM flour. The PM produced the flour with the finest particles with geometric mean diameter of 82 μm. The study also revealed that starch damage in the PM flour (4.64%) was higher than RM (2.46%) and HM flour (2.51%). The nutritional composition was not significantly affected by different grinding methods. Pasting properties of the flour were also affected by the grinding method applied. Rapid Visco Analysis profile showed pin mill flour to have a higher peak viscosity (PV) (2,295 cP) compared to HM (2,065 cP) and RM flour (2,130 cP). Finally, this study demonstrated that the production of bread from proso millet flour with desirable quality and texture is possible. The grinding method did not affect the specific volume of bread loaves and C-cell characteristics. The specific volume of the breads ranged from 2.40 to 2.52 cm3 /g. This study will help in promoting and producing value-added proso millet food products with enhanced nutritional quality.

Keywords: bread texture; gluten free baking; hammer milling; pin milling; proso millet; roller milling.

MeSH terms

  • Flour* / analysis
  • Panicum* / chemistry
  • Rheology
  • Starch / chemistry
  • Viscosity

Substances

  • Starch