In Situ Observation of Fracture along Twin Boundaries in Boron Carbide

Adv Mater. 2023 Dec;35(50):e2204375. doi: 10.1002/adma.202204375. Epub 2022 Oct 28.

Abstract

The observation of fracture behaviors in perfect and twinned B4 C crystals via in situ transmission electron microscopy (TEM) mechanical testing is reported. The crystal structure of the synthesized B4 C, composed of B11 C icosahedra connected by boron-deficient C-▫-C chains in a chemical formula of B11 C3 , is determined by state-of-the-art aberration-corrected scanning TEM. The in situ TEM observations reveal that cracking is preferentially initiated at the twin boundaries (TBs) in B4 C under both indentation and tension loading. The cracks then propagate along the TBs, thus resulting in the fracture of B4 C. These results are consistent with the theoretical calculations that show that TBs have a softening effect on B4 C with amorphous bands preferentially nucleated at the TBs. These findings elucidate the atomic arrangement and the role of planar defects in the failure of B4 C. Furthermore, they can guide the design of advanced superhard materials via planar defect control.

Keywords: atomic scale; boron carbide; fracture; in situ transmission electron microscopy; twin boundaries.