The overexpression of cytochrome P450 genes confers buprofezin resistance in the brown planthopper, Nilaparvata lugens (Stål)

Pest Manag Sci. 2023 Jan;79(1):125-133. doi: 10.1002/ps.7181. Epub 2022 Oct 4.

Abstract

Background: Buprofezin, an insect growth regulator, has been widely used to control brown planthopper (BPH), Nilaparvata lugens, one of the most destructive pests of rice crops in Asia. The intensive use of this compound has resulted in very high levels of resistance to buprofezin in the field, however, the underpinning mechanisms of resistance have not been fully resolved.

Results: Insecticide bioassays using the P450 inhibitor piperonyl butoxide significantly synergized the toxicity of buprofezin in two resistant strains of BPH (BPR and YC2017) compared to a susceptible strain (Sus), suggesting P450s play a role in resistance to this compound. Whole transcriptome profiling identified 1110 genes that were upregulated in the BPR strain compared to the Sus strain, including 13 cytochrome P450 genes, eight esterases and one glutathione S-transferase. Subsequently, qPCR validation revealed that four of the P450 genes, CYP6ER1vA, CYP6CW1, CYP4C77, and CYP439A1 were significantly overexpressed in both the BRP and YC2017 strains compared with the Sus strain. Further functional analyses showed that only suppression of CYP6ER1vA, CYP6CW1, and CYP439A1 gene expression by RNA interference significantly increased the toxicity of buprofezin against BPH. However, only transgenic Drosophila melanogaster expressing CYP6ER1vA and CYP439A1 exhibited significant resistance to buprofezin. Finally, the BPR strain was found to exhibit modest but significant levels of resistance to acetamiprid, dinotefuran and pymetrozine.

Conclusions: Our findings provide strong evidence that the overexpression of CYP6ER1vA and CYP439A1 contribute to buprofezin resistance in BPH, and that resistance to this compound is associated with low-level resistance to acetamiprid, dinotefuran and pymetrozine. These results advance understanding of the molecular basis of BPH resistance to buprofezin and will inform the development of management strategies for the control of this highly damaging pest. © 2022 Society of Chemical Industry.

Keywords: Nilaparvata lugens; buprofezin; metabolic resistance; pest control.

MeSH terms

  • Animals
  • Asia
  • Cytochrome P-450 Enzyme System* / genetics
  • Drosophila melanogaster*

Substances

  • Cytochrome P-450 Enzyme System