Multiscale approach for tFUS neurocomputational modelling

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul:2022:4712-4715. doi: 10.1109/EMBC48229.2022.9871341.

Abstract

Among the non-invasive methods employed for brain stimulation, trans cranial Focused Ultrasound Stimulation (tFUS) is the technique with the best penetration into the tissues and spatial resolution. The development of computational models of US propagation in brain tissue can be useful for estimating the behaviour of neural cells subjected to mechanical stimulus due to US. This paper aims at studying the neural cell response of a cortical Regular Spiking point neuron model, for different values of stimulus Duty Cycle (DC). The main goal is to use a multiscale approach to couple the results obtained from a macroscale simulation on wave propagation in tissue, with neuron model described by Hodgkin-Huxley equations to study latency and firing rate of the RS model. The obtained results showed that latency and firing rate have slight variations along the propagation direction of the US beam, in the focal region under the skull model, for different stimulus DC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / physiology
  • Computer Simulation
  • Echoencephalography*
  • Head
  • Skull*