Persistence of phenotypic responses to short-term heat stress in the tabletop coral Acropora hyacinthus

PLoS One. 2022 Sep 9;17(9):e0269206. doi: 10.1371/journal.pone.0269206. eCollection 2022.

Abstract

Widespread mapping of coral thermal resilience is essential for developing effective management strategies and requires replicable and rapid multi-location assays of heat resistance and recovery. One- or two-day short-term heat stress experiments have been previously employed to assess heat resistance, followed by single assays of bleaching condition. We tested the reliability of short-term heat stress resistance, and linked resistance and recovery assays, by monitoring the phenotypic response of fragments from 101 Acropora hyacinthus colonies located in Palau (Micronesia) to short-term heat stress. Following short-term heat stress, bleaching and mortality were recorded after 16 hours, daily for seven days, and after one and two months of recovery. To follow corals over time, we utilized a qualitative, non-destructive visual bleaching score metric that correlated with standard symbiont retention assays. The bleaching state of coral fragments 16 hours post-heat stress was highly indicative of their state over the next 7 days, suggesting that symbiont population sizes within corals may quickly stabilize post-heat stress. Bleaching 16 hours post-heat stress predicted likelihood of mortality over the subsequent 3-5 days, after which there was little additional mortality. Together, bleaching and mortality suggested that rapid assays of the phenotypic response following short-term heat stress were good metrics of the total heat treatment effect. Additionally, our data confirm geographic patterns of intraspecific variation in Palau and show that bleaching severity among colonies was highly correlated with mortality over the first week post-stress. We found high survival (98%) and visible recovery (100%) two months after heat stress among coral fragments that survived the first week post-stress. These findings help simplify rapid, widespread surveys of heat sensitivity in Acropora hyacinthus by showing that standardized short-term experiments can be confidently assayed after 16 hours, and that bleaching sensitivity may be linked to subsequent survival using experimental assessments.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa* / physiology
  • Coral Reefs
  • Heat-Shock Response
  • Hyacinthus*
  • Reproducibility of Results
  • Symbiosis

Grants and funding

This study was supported by National Science Foundation NSF grant OCE [1736736]; SRP and YG received funding. https://www.nsf.gov/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.