Use of magnetic resonance elastography to gauge meningioma intratumoral consistency and histotype

Neuroimage Clin. 2022:36:103173. doi: 10.1016/j.nicl.2022.103173. Epub 2022 Aug 29.

Abstract

Objective: To determine whether tumor shear stiffness, as measured by magnetic resonance elastography, corresponds with intratumoral consistency and histotype.

Materials and methods: A total of 88 patients with 89 meningiomas (grade 1, 74 typical [13 fibroblastic, 61 non-fibroblastic]; grade 2, 12 atypical; grade 3, 3 anaplastic) were prospectively studied, each undergoing preoperative MRE in conjunction with T1-, T2- and diffusion-weighted imaging. Contrast-enhanced T1-weighted sequences were also obtained. Tumor consistency was evaluated as heterogeneous or homogenous, and graded on a 5-point scale intraoperatively. MRE-determined shear stiffness was associated with tumor consistency by surgeon's evaluation and whole-slide histologic analyses.

Results: Mean tumor stiffness overall was 3.81+/-1.74 kPa (range, 1.57-12.60 kPa), correlating well with intraoperative scoring (r = 0.748; p = 0.001). MRE performed well as a gauge of tumor consistency (AUC = 0.879, 95 % CI: 0.792-0.938) and heterogeneity (AUC = 0.773, 95 % CI: 0.618-0.813), significantly surpassing conventional MR techniques (DeLong test, all p < 0.001 after Bonferroni adjustment). Shear stiffness was independently correlated with both fibrous content (partial correlation coefficient = 0.752; p < 0.001) and tumor cellularity (partial correlation coefficient = 0.547; p < 0.001). MRE outperformed other imaging techniques in distinguishing fibroblastic meningiomas from other histotypes (AUC = 0.835 vs 0.513 ∼ 0.634; all p < 0.05), but showed limited ability to differentiate atypical or anaplastic meningiomas from typical meningiomas (AUC = 0.723 vs 0.616 ∼ 0.775; all p > 0.05). Small (<2.5 cm, n = 6) and intraventricular (n = 2) tumors displayed inconsistencies between MRE and surgeon's evaluation.

Conclusions: The results of this prospective study provide substantial evidence that preoperative evaluation of meningiomas with MRE can reliably characterize tumor stiffness and spatial heterogeneity to aid neurosurgical planning.

Keywords: Elastography; Magnetic resonance imaging; Mechanical properties; Meningiomas; Stiffness.

MeSH terms

  • Elasticity Imaging Techniques* / methods
  • Humans
  • Magnetic Resonance Imaging / methods
  • Meningeal Neoplasms* / diagnostic imaging
  • Meningeal Neoplasms* / pathology
  • Meningeal Neoplasms* / surgery
  • Meningioma* / diagnostic imaging
  • Meningioma* / pathology
  • Meningioma* / surgery
  • Prospective Studies