A High-Accuracy Calibration Method for a Telecentric Structured Light System

Sensors (Basel). 2022 Aug 24;22(17):6370. doi: 10.3390/s22176370.

Abstract

We propose a method for accurately calibrating a telecentric structured light system consisting of a camera attached to a bilateral telecentric lens and a pin-hole projector. The proposed method can be split into two parts: axial calibration and transverse calibration. The first part is used for building the relationship between phase and depth by means of a planar plate with ring markers on its surface at several different positions in the measuring volume. The second part is used for establishing the relationship between transverse coordinates and pixel positions with the depth offered by a translation stage and the extracted ring centers. Compared with existing methods that require projector calibration, the proposed method can avoid a propagation of the correspondence error between the camera imaging plane and projector imaging plane, thus increasing calibration accuracy. The calibrated telecentric structured light system is further used for three-dimensional (3D) reconstructions of a planar, a ruled surface, and complex surfaces. Experimental results demonstrate that the proposed system calibration method can be used for accurate 3D measurement.

Keywords: 3D measurement; fringe projection; system calibration; telecentric structured light system.