Molecular Imprinted ZnS Quantum Dots-Based Sensor for Selective Sulfanilamide Detection

Polymers (Basel). 2022 Aug 29;14(17):3540. doi: 10.3390/polym14173540.

Abstract

Combining molecular imprinted polymers and water-soluble manganese-doped zinc sulfide quantum dots (Mn2+: ZnS QDs), a new molecule imprinted polymers-based fluorescence sensor was designed. The molecule imprinted quantum dots (MIP@QDs) were constructed by coating molecular imprinted polymers layer on the surface of ZnS: Mn2+ QDs using the surface molecular imprinting technology. The developed MIP@QDs-based sensor was used for rapid and selective fluorescence sensing of sulfanilamide in water samples. The binding experiments showed that the MIP@QDs has rapid fluorescent responses, which are highly selective of and sensitive to the detection of sulfanilamide. The respond time of the MIP@QDs was 5 min, and the imprinting factor was 14.8. Under optimal conditions, the developed MIP@QDs-based sensor shows a good linearity (R2 = 0.9916) over a sulfanilamide concentration range from 2.90 × 10-8 to 2.90 × 10-6 mol L-1, with a detection limit of 3.23 × 10-9 mol L-1. Furthermore, the proposed MIP@QDs-based sensor was applied to the determination of sulfanilamide in real samples, with recoveries of 96.80%-104.33%, exhibiting good recyclability and stability. Experimental results showed that the prepared MIP@QDs has the potential to serve as a selective and sensitive sensor for the fluorescence sensing of sulfonamides in water samples.

Keywords: fluorescence sensor; molecular imprinted polymers; sulfanilamide; zinc sulfide quantum dots.