Effect of Iodide-Based Organic Salts and Ionic Liquid Additives in Dye-Sensitized Solar Cell Performance

Nanomaterials (Basel). 2022 Aug 29;12(17):2988. doi: 10.3390/nano12172988.

Abstract

The use of ionic liquid and organic salts as additives for electrolyte systems in dye-sensitized solar cells have been widely described in recent years. The tunability of their physical-chemical properties according to the cation-anion selection contributes toward their high efficiencies. For this purpose, several iodide-based organic salts including imidazolium, picolinium, guanidinium and alkylammonium cations were tested using acetonitrile/valeronitrile electrolytes and their photovoltaic parameters were compared. A best efficiency of 4.48% (4.15% for the reference) was found for 1-ethyl-2,3-dimethylimidazolium iodide ([C2DMIM]I) containing electrolyte, reaffirming the effectiveness of these additives. 4-tertbutylpyridine was included into the formulation to further improve the performance while determining which iodide salts demonstrate the highest synergy with this additive. [C2DMIM]I once again proved to be the superior additive, achieving an efficiency of 6.48% (6% for the reference). Electrochemical impedance spectroscopy was employed to elucidate the effects of the various additives, demonstrating the relevance of the counter electrode resistance on device performance. Finally, several computational descriptors for the cationic structures were calculated and correlated with the photovoltaic and resistance parameters, showing that properties related to polarity, namely relative positive charge, molecular polarizability and partition coefficient are in good agreement with the counter-electrode resistance.

Keywords: dye-sensitized solar cells; guanidinium; imidazolium; ionic liquids and organic salts; picolinium; tetralkylammonium.

Grants and funding

This work was performed under the project PTDC/QUI-QOR/7450/2020 “Organic Redox Mediators For Energy Conversion” through Fundação para a Ciência e a Tecnologia I. P.-FCT. Additional support includes the Associate Laboratory for Green Chemistry–LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020). FCT/MCTES is also acknowledged for the National NMR Facility (RECI/BBB-BQB/0230/2012 and RECI/BBB-BEP/0124/2012,) and Ph.D. grants 2020.09047.BD (J.S.), PD/BD/135087/2017 (A.L.P.) and PD/BD/145324/2019/ (G.M.).