An NmrA-Like Protein, Lws1, Is Important for Pathogenesis in the Woody Plant Pathogen Lasiodiplodia theobromae

Plants (Basel). 2022 Aug 24;11(17):2197. doi: 10.3390/plants11172197.

Abstract

The NmrA-like proteins have been reported to be important nitrogen metabolism regulators and virulence factors in herbaceous plant pathogens. However, their role in the woody plant pathogen Lasiodiplodia theobromae is less clear. In the current study, we identified a putative NmrA-like protein, Lws1, in L. theobromae and investigated its pathogenic role via gene silencing and overexpression experiments. We also evaluated the effects of external carbon and nitrogen sources on Lws1 gene expression via qRT-PCR assays. Moreover, we analyzed the molecular interaction between Lws1 and its target protein via the yeast two-hybrid system. The results show that Lws1 contained a canonical glycine-rich motif shared by the short-chain dehydrogenase/reductase (SDR) superfamily proteins and functioned as a negative regulator during disease development. Transcription profiling revealed that the transcription of Lws1 was affected by external nitrogen and carbon sources. Interaction analyses demonstrated that Lws1 interacted with a putative GATA family transcription factor, LtAreA. In conclusion, these results suggest that Lws1 serves as a critical regulator in nutrition metabolism and disease development during infection.

Keywords: Lasiodiplodia theobromae; nutrition metabolism; pathogenicity; short-chain dehydrogenase/reductase.