Hydrating Capabilities of the Biopolymers Produced by the Marine Thermophilic Bacillus horneckiae SBP3 as Evaluated by ATR-FTIR Spectroscopy

Materials (Basel). 2022 Aug 30;15(17):5988. doi: 10.3390/ma15175988.

Abstract

The surfactin-like lipopeptide (BS-SBP3) and the exopolysaccharide (EPS-SBP3) produced by the polyextremophilic Bacillus horneckiae SBP3 (DSM 103063) have been recently described as valuable biopolymers useful in biotechnological applications. To investigate the hydrating capabilities of BS-SBP3 and EPS-SBP3, here we evaluated (i) their wetting properties, measuring the contact angle; (ii) their moisture uptake abilities using the gravimetric method; and (iii) their hydrating states (from 0 to 160% w/w of water content) using ATR-FTIR spectroscopy. BS-SBP3 reduced the water contact angle on a hydrophobic surface from 81.7° to 51.3°, whereas the contact angle in the presence of EPS-SBP3 was 72.9°, indicating that BS-SBP3 improved the wettability of the hydrophobic surface. In the moisture uptake tests, EPS-SBP3 absorbed more water than BS-SBP3, increasing its weight from 10 mg to 30.1 mg after 36 h of 100% humidity exposure. Spectral distance and cross-correlation analyses were used to evaluate the molecular changes of the two biopolymers during the hydration process. As the water concentration increased, BS-SBP3 spectra changed in intensity in the two contributions of the OH-stretching band named "closed" and "open" (3247 and 3336 cm-1, respectively). Differently, the spectra of EPS-SBP3 exhibited a broader peak (3257 cm-1), which shifted at higher water concentrations. As evaluated by the spectral distance and the wavelet cross-correlation analysis, the OH-stretching bands of the BS-SBP3 and EPS-SBP3 changed as a function of water content, with two different sigmoidal trends having the inflection points at 80% and 48%, respectively, indicating peculiar water-properties of each biopolymer. As wetting agents, these biopolymers might replace industrially manufactured additives in agriculture and the food and cosmetic industries.

Keywords: Bacillus; biosurfactant; extremophiles; infrared spectroscopy; wetting agents.

Grants and funding

This research received no external funding.