Water Transport through Cracked Concrete Structures-Effect of Mixture Proportion on Separating Crack Geometry and Permeability

Materials (Basel). 2022 Aug 23;15(17):5807. doi: 10.3390/ma15175807.

Abstract

The increase in fluid transport due to separating cracks can lead to significant deterioration in the durability of reinforced concrete structures. Besides reinforcement and stress state, concrete mixture proportion has a significant effect on crack geometry. In this study, we investigated concrete mixtures with different aggregate size and shape, aggregate gradation, cement type and water-to-cement ratio with regard to crack geometry and resulting water permeation. Besides surface-crack width and length, we determined inner-crack width variation over depth and tortuosity by X-ray micro-computed tomography. Furthermore, we conducted permeation tests for each specimen. Among the mixture components tested, aggregates have the strongest effect on crack geometry and flow rate. Increasing aggregate size results in increasing tortuosity and decreasing flow rate. Furthermore, the replacement of round with angular aggregates results in slightly higher flow rates for a given crack width.

Keywords: concrete composition; crack geometry; separating cracks; water permeability.