Generation and Characterization of Bovine Testicular Organoids Derived from Primary Somatic Cell Populations

Animals (Basel). 2022 Sep 3;12(17):2283. doi: 10.3390/ani12172283.

Abstract

Organoids are 3D-culture systems composed of tissue-specific primary cells that self-organize and self-renew, creating structures similar to those of their tissue of origin. Testicular organoids (TOs) may recreate conditions of the testicular niche in domestic and wild cattle; however, no previous TO studies have been reported in the bovine species. Thus, in the present study, we sought to generate and characterize bovine TOs derived from primary testicular cell populations including Leydig, Sertoli and peritubular myoid cells. Testicular cells were isolated from bovine testes and cultured in ultra-low attachment (ULA) plates and Matrigel. TOs were cultured in media supplemented from day 3 with 100 ng/mL of BMP4 and 10 ng/mL of FGF2 and from day 7 with 15 ng/mL of GDNF. Testicular cells were able to generate TOs after 3 days of culture. The cells positive for STAR (Leydig) and COL1A (peritubular myoid) decreased (p < 0.05), whereas cells positive for WT1 (Sertoli) increased (p < 0.05) in TOs during a 28-day culture period. The levels of testosterone in media increased (p < 0.05) at day 28 of culture. Thus, testicular cells isolated from bovine testes were able to generate TOs under in vitro conditions. These bovine TOs have steroidogenic activity characterized by the production of testosterone.

Keywords: 3D-culture system; Leydig cells; Sertoli cells; bovine testicular organoid; peritubular myoid cells.