Genome-Wide Identification and Expression Analysis of the NAC Gene Family in Alfalfa Revealed Its Potential Roles in Response to Multiple Abiotic Stresses

Int J Mol Sci. 2022 Sep 2;23(17):10015. doi: 10.3390/ijms231710015.

Abstract

NAC (NAM, ATAF1/2, and CUC2) transcription factors compose one of the largest families of plant-specific transcription factors; they are widely involved in plant growth and development and have especially important roles in improving stress resistance in plants. However, NAC gene family members in alfalfa (Medicago sativa L.) have not been systematically identified and analyzed genome-wide due to the complexity of the alfalfa reference genome. In this study, a total of 421 M. sativa NAC genes (MsNACs) were identified from the alfalfa “Xinjiangdaye” reference genome. Basic bioinformatics analysis, including characterization of sequence length, protein molecular weight and genome position and conserved motif analysis, was conducted. Expression analysis showed that 47 MsNACs had tissue-specific expression, and 64 MsNACs were expressed in all tissues. The transcriptomic profiles of the genes were very different, indicating that these MsNACs have various functions in alfalfa growth and development. We identified 25, 42 and 47 MsNACs that respond to cold, drought and salt stress based on transcriptome data analysis and real-time quantitative PCR (RT−qPCR). Furthermore, 22 MsNACs were found to respond to both salt and drought stress, and 15 MsNACs were found to respond to cold, salt and drought stress. The results of this study could provide valuable information for further functional analysis of MsNACs and for the improvement of stress resistance in alfalfa.

Keywords: MsNAC; abiotic stress; alfalfa; gene family; genome-wide.

MeSH terms

  • Droughts
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Plant*
  • Medicago sativa* / genetics
  • Medicago sativa* / metabolism
  • Phylogeny
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Stress, Physiological / genetics
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Plant Proteins
  • Transcription Factors