A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study

Psychophysiology. 2023 Feb;60(2):e14173. doi: 10.1111/psyp.14173. Epub 2022 Sep 8.

Abstract

Unlike traditional pulse transit time (PTT), continuous PTT (CPTT) can be used to calculate PTT from all samples within the cardiac cycle. It has the potential to be utilized for continuous blood pressure (BP) estimation. This study evaluated the feasibility of CPTT as a non-invasive consecutive blood pressure estimation method in 20 volunteers. The CPTT was calculated with a time delay in all discrete samples of photoplethysmograms measured at two different body sites. BP was then calculated with a regression equation. For comparative evaluation, BP based on PTT was also estimated. Continuous blood pressure was measured using a non-invasive volume clamp BP monitoring device. Four types of BP measurement, systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), were estimated using PTT and CPTT. Correlation coefficients and root-mean-squared-error (RMSE) were used for evaluating BP estimation performance. For estimating SBP, DBP, PP, and MAP, PTT-based BP estimation showed correlations of .407, .373, .410, and .286, respectively, and CPTT-based BP estimation showed correlations of .436, .446, .506, and .097, respectively. With PTT-based estimation, the RMSE between the estimated BP and the baseline BP was 5.44 ± 1.56 mmHg for SBP, 3.14 ± 0.46 mmHg for DBP, 3.66 ± 0.70 mmHg for MAP, and 3.73 ± 1.31 mmHg for PP. The estimated BP using CPTT showed RMSE of 5.36 ± 1.39 mmHg for SBP, 3.02 ± 0.49 mmHg for SBP, 3.44 ± 0.63 mmHg for MAP, and 3.91 ± 1.41 mmHg for PP.

Keywords: blood pressure; continuous blood pressure; continuous pulse transit time; pulse transit time; pulse wave velocity.

Publication types

  • Observational Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Pressure / physiology
  • Blood Pressure Determination* / methods
  • Heart Rate / physiology
  • Humans
  • Pulse Wave Analysis* / methods