Transfer RNAs-derived small RNAs and their application potential in multiple diseases

Front Cell Dev Biol. 2022 Aug 22:10:954431. doi: 10.3389/fcell.2022.954431. eCollection 2022.

Abstract

The role of tRNAs is best known as adapter components of translational machinery. According to the central dogma of molecular biology, DNA is transcribed to RNA and in turn is translated into proteins, in which tRNA outstands by its role of the cellular courier. Recent studies have led to the revision of the canonical function of transfer RNAs (tRNAs), which indicates that tRNAs also serve as a source for short non-coding RNAs called tRNA-derived small RNAs (tsRNAs). tsRNAs play key roles in cellular processes by modulating complicated regulatory networks beyond translation and are widely involved in multiple diseases. Herein, the biogenesis and classification of tsRNAs were firstly clarified. tsRNAs are generated from pre-tRNAs or mature tRNAs and are classified into tRNA-derived fragments (tRFs) and tRNA halves (tiRNA). The tRFs include five types according to the incision loci: tRF-1, tRF-2, tRF-3, tRF-5 and i-tRF which contain 3' tiRNA and 5' tiRNA. The functions of tsRNAs and their regulation mechanisms involved in disease processes are systematically summarized as well. The mechanisms can elaborate on the specific regulation of tsRNAs. In conclusion, the current research suggests that tsRNAs are promising targets for modulating pathological processes, such as breast cancer, ischemic stroke, respiratory syncytial virus, osteoporosis and so on, and maintain vital clinical implications in diagnosis and therapeutics of various diseases.

Keywords: diseases; mechanism; non-coding RNA; tRNA; tRNA-derived small RNAs (tsRNA).

Publication types

  • Review