Can EGFR be a therapeutic target in breast cancer?

Biochim Biophys Acta Rev Cancer. 2022 Sep;1877(5):188789. doi: 10.1016/j.bbcan.2022.188789. Epub 2022 Sep 3.

Abstract

Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.

Keywords: Breast cancer; EGFR; Protein degradation; Targeted therapy.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / genetics
  • Breast Neoplasms* / pathology
  • ErbB Receptors / genetics
  • Female
  • Humans
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Protein Kinase Inhibitors
  • EGFR protein, human
  • ErbB Receptors